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A VARTATTIONAL METHOD FOR MULTISTACE LAUNCH VEHICLE OPTIMIZATION
by Fred Teren and Omer F. Spurlock
Lewis Research Center

National Aeronautics and Space Administration
Cleveland, Ohio

The methods of the calculus of variations are used to maximize payload
capabiliisy TFor nultistage launch vehicles. The method of solution uses the
Lagrange nulsipiiers to determine the optimum thrust direction profile, as
w=11 as to construct partial derivatives of payload with respect to the stage
wropellant loadings and a booster steering parameter. These derivativeé are
zed to termirnate *the stages and/or as terminal equations to be satisfied.
Maximum payload can thus be achieved with s single solution, rather than with
2 family of parametric results. Constant thrust and specific-impulse opera-
+ion is assured for each upper stage (booster thrust and specific impulse
vary with atmospheric pressure), and structure weight can be either fixed or
a linear function of the stage propellant loadirg. Two-dimensional flight
in a central, inverse-sjuare gravitational fleld is assumed.

Numerical results are presented for two- and three-stage launch vehilcles
£lown o cirsular orbit and Earth escape, respectively. Parametric results
are presernted and compered with the overall optimum solution obtalned by use
of the varietlonal technigue. (zLLiL&M)

INTRCDUCTION

A problem that frequently arises in trajectory optimization studies is
that of deternining the maximum payload capability of a multistage launch
vehicle flown to a prescribed set of burnout conditions. If all vehicle pa-

rameters ere specified, the problem reduces to that of finding the optimum
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teering profile. In many cases, however, not all these parameters are speci-
fied, and those left unspecified can be varied to maximize payload.

A typical situation that occurs in the design of future launch vehicles
is one in which the stage thrust levels and propellant flow rates (and, for
rracticality, the gross launch weight) are specified, but some or all the
stage propellant loadings are left unspecified. The unspecified propellant
loadings generally can be varied to achieve maximum payload capability for
the vehicle.

An additional optimizing parameter frequently is available in the booster
steering program. Since the booster stage operates in the atmosphere, the
booster thrust direction profile is shaped to minimize aerodynamic heating
and loads and is not available for complete optimization. A single degree
of freedom remains, however, corresponding to the magnitude of a short pitch-
over phase following the initial vertical rise. This degree of freedom, some-
times called the booster kick angle, determines the amount of trajectory loft-
ing during boost phase. Since the upper stages operate essentially under
vacuum conditions, the steering program for these stages is available for
complete optimization.

Many authors (e.g., refs. 1 to 7) have treated the problem of optimizing
the stage propellant loadings of multistage vehicles. None of these authors,
however, has attempted to optimize the steering program for these vehicles.
Others (e.g., refs. 8 to 10) have used the calculus of variations to optimize
the steering program for verious rocket vehicles. In particular, reference 11
treats the problem of optimizing the steering program of a multistage launch
vehicle. Reference 11, however, does not consider the problem of optimizing
the stage propellant loedings or booster kick angle.

Recently, Mason, Dickerson, and Smith (ref. 12) have considered the prob-
lem of simultaneously optimizing the steering program and the stage propellant
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loadiags of a multistage launch vehicle. These authors followed the approach
of Denbow (ref. 13) and Hunt and Andrus (ref. 14) in formulating the variational
problen.

The present report was written concurrently with reference 12 and presents
a method which allows the propellant loadings, booster kick angle, and upper-
stage steering program to be simultaneously optimized. The variational approach
is somewhat different from that used in reference 12. By following the method
of reference 15, the maximizing functional is written as the sum of the final
vayload and a constraint integral for each of the upper stages. The resulting
boundary eguations supply partial derivatives of payload with respect to the
unspecified parameters. These derivatives are then used, along with the re-
gquired burnout conditions, as terminal equations to be satisfied. The analysis
does rot require that all the stage propellant loadings (or booster kick angle)
be optimized. Eguations are developed for optimizing payload with respect to
any combination of unspecified parameters.

The varistional equations for optimizing vehicle parameters have been in-
corporated into a digital computer progrem used previously at Lewls for para-
metric Zaunch-vehizle studies. Some of the procedures used to obtain numeri-
cal results with this program asre discussed in reference 16. Numerical results
are preseuted for two- and three-stage launch vehicles flown to circular orbit
and Earth escape, respectively, to demonstrate the feasibility of the varia-
+ional approach. Perametric results are presented showing the variation of
peyload with propellant loadings and booster kick angle. The resulting pay-
load envelopes are then compared with the overall optimum points generated
directly by means of the variational technique in order to verify the equations.

ANALYSIS

The problem to be solved is to determine the maximum payload capability

of an N-stage launch vehicle flown to a specified set of burnout conditions.
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The analysics admits atmospheric effects during booster phase but assumes vacuum
operation for all other stages. Because of these atmospheric effects, the
booster steering program is assumed completely specified (e.g., zero angle of
attack), except for the booster kick angle. The upper-stage steering progran,
however, is unconstrained and is determined to maximize payload. The calculus
of variations 1s used for this purpose.

Each of the upper stages is assumed to operate at a fixed (constant) value
of thrust and propellant flow rate. These values may be zero, so that coast
phases are admitted. The structure mass for each stage is assumed to be a
linear function of the stage propellart losding, defined by

m, =my + kmp
where mg 1s the total structure mass, my is the fixed mass, My, is the stage
propellant mass, and k 1s the propellant sensitive mass fraction. (All sym-
bols are defined in appendix A.)

In addition to the variational trajectory, provision is also made for add-
ing an additional velocity increment AVI after the desired orbit conditions
are achieved. This velocity increment is achieved by use of the final stage
for propulsion. The amount of propellant required for this maneuver is calcu-
lated by use of the standerd impulsive velocity equations.

Variational Problem

Since the booster steering program is not subject to complete optimization,
the booster stage 1s not treated in the following Euler-Laegrange equations.

The booster degrees of freedom (propellant loading and kick angle) are included
by allowing variations in the position and velocity at second-stage ignition.
The associated equations, along with the equations for optimizing upper-stage
propellant loadings, are treated in the boundary equations resulting from the
variational analysis.

The variational problem to be solved is that of finding the upper-stage
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+hrast program which maximizes the payioad capability of an N-stage launch
vehicle for given boundary conditions. This problem can be formulated as a
generalized Bolza problem. By following the treatment in reference 15, the

functional to be minimized can be written as

ti
J =g+ Fi dt (1)
i=2 ti_l

where g is a function of initial and final conditions to minimized and Fy
consists of a set of constraints to be applied to each of the upper stages,
added together with the aid of Lagrange multipliers. For this problem, the
rayioad is to be maximized, so that

g = -mpy, (2)

The constraiut egquations are

T.
fi; =0+ B oo fr - Lsiny =0 (3a)

1 2 m

: Ty

fpy = Td + Zuw - —=cos § =0 (3p)
f3i = f‘ - 1 = O (SC)
f4:i = Q.p -w =0 (Sd)
fgy = %+ By =0 (3e)

appiicable on the inferval

ti-1 £t €61

Eguations (3e) to (3d) are the two-body equations of motion written in two-
dimersional polar coordinates with an inverse square force field acting. The
+yrust direction ¢ and the state variables are defined in figure 1. Equa-

vion (3e) defines the propellant flow rate.

Equations (3) are combined to give



where A are undetermined Lagrange multipliers, which are functions of time

Ji
since the constraint equations must be satisfied at all points of the trajectory.
Fuler-Lagrange Equations

As shown in reference 17, a necessary condition for g to be minimized

is that the Euler-lagrange equations be satisfied. The Euler-Lagrange equa-

tions are
a OF OF. ) .
E(Wi)=ﬁl i=2,...,N3=1,...,686 (5)
J J
where xj are the problem variables
Xl(t) = u )
x(t) = o
Xs(t) =TI
) (6)
x4(t) =
x(t) =m
X6('t) =V J

The Euler-Lagrange equations for the present problem can be written explicitly

by use of equations (3) and (4):

‘ A

] u 4

Ag = =26h + T g - — (70)

5\3 = -CT% + d)2>}\l + (I)?\z (70)

N =0 (7a)

As = = (A, sin y + A ) (7e)

5 = mz 1 s5in 1If 2 cOSs \J] e
T

(%l cos § - A, sin w)a =0 (7£)

Equations (7) (and subsequent equations) apply separately to each of the upper
stages. The subscript i has been omitted for simplicity.

Equation (7f) determines the thrust direction (for T # 0):



tan y = o (8a)
N

sin y = (6b)
Y
A

cos y = z (8e)

———E—:—;g
The choice of sign in equations (8b) and (8c) has been determined by use of
the Weierstrass E-test (ref. 18).

Equations (7a) to (74) must be integrated, along with the equations of
motion to determine the thrust direction and the optimum trajectory. It is
shown later that equation (7e) need not be integrated. Equation (7d) is
easily integrated to give

A4 = Constant (9)

First Integral

Since the function F does not contain the independent variable (time)

explicitly, & first integral to the Euler-lagrange equations exists (for each

stage), which can be stated as (ref. 17)

F-gg%kj:c (10)

Equation (10) can be written explicitly by use of equations (3) and (4):

C - (ﬁ% - a@r))q_- 2uwhy + UAz + Wy - BAg + % (A sin ¥ + Ay cos ) = O

(11)
Equation (11) is used later in the analysis to eliminate both C and Ag
from the boundary equations.
Welerstrass-Erdmann Corner Condition

The boundary conditions on the Lagrange multipliers at staging points

can be derived with the aid of the Welerstrass-Erdmann corner condition
oF

(ref. 17). This condition states that 55—-(j =1, . . ., 6) must be continuous
J
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at such corners. For the present problem, this condition implies that all the
multipliers are continuous at staging points, hence continuous throughout the
trajectory.
Trensversality Equation
The relation between changes in boundary conditions and changes in J 1is
expressed by the general transversality equation (ref. 17). For this problem,

the transversality equation can be written

OF; OF
555 at +:E:; 5§3 dxj + dg (12)
J= ti1

This equation can be written explicitly by using the definition of F and the
first integral

N t
dJ:Q(Ci‘dt + A du + Ay dw + Ag dr + g dop + g dmi)t].L . +dg (13)
1= i-

The subscript 1 has been used with C and dm since these variables may
be discontinuous at staging points.
Boundary Equations
If some of the problem variables (state conditions or control variables)
are not specified, values should be chosen which minimize J (or, equivalently,
maximize payload).
According to reference 17, minimizing J 1is accomplished by setting d4J

equal to zero. Equation (13) has the form

m

a7 = ;;; Gy dxy = 0 (14)

If the m problem vaeriables Xy are all independent, dJ wil vanish if, and

only if, each term on the right side of equation (14) is independently set equal
to zero. For specified variables X5 the allowable variation dxj is zero;

for unspecified x.

37 the coefficient Gj must be set equal to zero. Equa-



tion (14) can thus be interpreted as a total differential of J, and
G, = 9
J 7 ox,
J
Equation (13) is not suitable for this interpretation, since the variables are
not all independent. In the following section the dependent variables are
eliminated by expressing the dependence explicitly.

Consider first the terms in equation (13) involving the variations of the

state variables.

t. =l
Z?; (%1 du + A, dw + Ag dr + Ay d@)ti 1 ﬁt; [(7\l au)*t - (A au)™ + (rh, dw) "
1= e 1=

- (r, dw)  + (g ar)’ - (Mg ar)” + (0, d¢)+ - (N, d@)-]

t=t;
+ (N du + Ty do + Nz dr + Ny dp) . - (A du + Ay dw + Nz dr + A4 dp) 4
t=ty t=ty
(15)
where the superscripts - and + refer to conditions before and after staging,

respectively. Since the state variables and Lagrarge multipliers are continuous
throughout the trajectory, the summation on the right side of equation (15) is
identically zero. At t = t;, the variations in state conditions are due to

the allowable variations in booster burning time and kick angle.

X ; OX 3
=—‘ld’['l+aad—Jda, j=l,-..,4: (]—6)

(ax.)
J -tz-tI aTl

where « 1s the booster kick angle and 71 is the booster burning time. (In

general, tv; 1is the burning time of stage 1, that is, Ty = t, - ti_l). For

i

generality, the state variations at t = tﬁ are expressed in terms of a set

of generalized (independent) state veariables, N 2 k=1, . . ., 4, so that
z ij
dxj = én_ dnk J = l’ « o oy 4 (17)
k=1 k

Combining equations (15) to (17) yields



| (b aw Br dp |

k=1 t_'tN
du ar ou oW or 0
(7\1 + r7\2 5—— + 7\3 + 7\4 §) +dCL - (7\1 5'1'_1 +r?\2 a"['l +7\3 gfl + 7\4__ 55"El> +d.Tl
t=ty t=ty
(18)

Inasmuch as a suitable form for the state variation terms in equation (13)
has been obtained, the mass and payload variation terms are now considered.
Since the propellant flow rate is constant for each stage, the variables my

can be expressed as functions of the burning times of the stages. Specifically,

i-1
mg =mg - ;:; El + kZ)BZTZ + mH,J (19a)
B i=1, L, N
£ i-1
my =my - g;; El + kZ)BlTZ + mH,J - ByTy (19b)

where my is the lift-off mass. The summations in equations (19) (and all
other similar summations) are defined to be zero whenever the lower summation
limit exceeds the upper 1limit. The superscripts O and f refer to condi-
tions at the beginning and the end of each stage, respectively.

In order to calculate the final payload, the velocity impulsé discussed
earlier must first be considered. This velocity impulse is added after the
desired orbit is achieved, with the use of the Nth stage for propulsion. After
this maneuver is completed, the Ntk stage hardware is jettisoned. The propel-

lant required for the velocity impulse is

AV T
fnp = mli\}(l —e 1 B/ N)

By use of equation (19b), the final payload can be written

N-
Mpr = Y{no - g El + kZ)BlTZ + mH’J - BNTI\} - kyByTy - My N (20)

where Y has been defined as

) -AVT By/Ty

T = -kN + (1 + kN e (21)
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The variations ¢g, ¢£, and dmpy  can now be expressed in terms of the

variations in burning times by differentiating equations (19) and (20).

1=
and = - (1) ary ] (22a)
$ i=1, , N
f =
=1 J
N-1
dmpr, =-y§_\( (1 + ky)By a7y - (v + Ky)By dry (22¢)

By use of equations (22}, the terms in equation (13) involving dr; can be
simplified and expressed in terms of +the variations dTi

N-1 =1
ﬁi s : %:‘ -
= i-1 ) i=1

—xgsN dry + AS(L + ky)py d7g (23)
where

i
As

i

0), .,

Also, the time variation terrs in equation (13) can be expressed in terms of
variations in the stage burning tiues:
N - N
;; (cy dt)ti = p ¢y dry (24)
= - =2
The varietion of g 1s .alculated by combining equations (2) and (22¢):
-1

ag = 1 (1 + ky)By dry + (v + ky)By dry (25)

The variable kg can be eliminated from equation (23) by use of the following

identity:
N D I~ g
N Y141 Y1 41-1 1 a1-1 i
TR ) B ) B et
T=1+1 V! =1+l N\ L =1+l
B4 #0 B1#0 py=0

Tt is convenient to define
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C. . N\
f _ 71 _ 51
53 =5 A Bi#o (27a)
1
0 _ L i /o (270)
iTF s Bi >
+ i=2,...,0N
st 2o B, =0 (27¢)
i i
0
5{ =0 B; = O (274)
J
£f_ 1 du dw or 3
S =-S5t M ST (27¢)
1 1 1 1 1
Also, note that XS = 0 for coast phases, so that for T; =0,
i Li-1
Xs = %5 (28)

By use of equations (27) and (28), equation (26) becomes
A= - (st - 80y +d , (29)
=1+1
Equations (16) to (18), (23) to (25) and (29) are now combined with equa-

tion (31) to give

N-1
N
aJ= (1 + kl)Bl[T + z::: (Sg - S?J + Bisi}dTi
£ 1=1+1
B470
X 7 du dw dr d

1= 1
B4=0

+ : A b, 249, L, S0 dny = O (30)
J:l tth

The variations in equation (30) are all independent, so that the form of equa-

tion (14) has been achieved, with

alry) = (1 + ki)BiE n ZN:/\ (s] - s?ﬂ +py8t, By £ 0 (31a)

1=1+1
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G(74) = Cq, By =0 i=2,...,N-1 (31b)

Glry) = (v + ky)By + BySh (31c)
Ju AW or
Gla) = -(7\1 o P m s <t M %)c:tl (31a)
_ du 3w or
G(T]J.)—(?\:LSF+I'7\2W+7\ +7\ ) =1, . .., 4 (3le)
J J ﬁtN
From equations (11) and (27),
- A - - _l z
[k;g uﬁ%)%l + Zuwkz u%B w% { % + A ]
ol
Sy = . (32a
i
. i=z, . ., Nj
Ty /
[ij% -a)z)xl + 2uWhg, - UAg - WA, - _5 + %2 By #0
0 my
Sy = 32b
0 - (32v)
C; = (Ji--aﬁr)X + 2uwh, - uhz - w%] (32¢c)
i [Iz 1 2 3 4 By=05t, 4 <bst,

Since equations (32) do not contain ¢ or A5, equation (7e) need not be inte-
grated to evaluate equations (31), as indicated earlier.
Boundary Value Problem
The determination of an optimum trajecztory requires the simultaneous
integration of the equations of motion and the Euler-Lagrange equations. A set

of initial conditions (state variables and Lagrange multipliers) and staging

The trajectory thus generated must satisfy N + 5 final conditions, corre-
sponding to the N + 5 independent problem variables in equation (30). For

specified variables, the final conditions have the form
Xy = X5 4 (33)
where the subscript d indicates the desired final value. For unspecified vari-

ables, equations (31) supply auxiliary final conditions with the form
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6(x;) = O | (34)

Some of equetions (33) are easily satisfied; for example, a specified burn-
ing time for any stage can be achieved simply by terminating that stage at the
proper time during the integration. An iteration is required in order to satisfy
the nontrivial final conditions, and variable initial conditions (equal to the
number of final conditions) must be available. For the present problem, the
Lagrange multipliers (%i, i=1, .. ., 4), the burning times of all stages
being optimized, and the booster kick angle (if it is being optimized) are avail-
able as variable initial conditions.

The size of the iteration loop can be reduced by using the fact that equa-
tions (7) are homogeneous in the A's. This implies that the choice of any one
A 1is arbitrary and serves only as a scale factor for the others. The value of
this multiplier can be chosen to satisfy one of equations (31).

The iteration size can be further reduced when K4 = 0 1is a required final
condition, which occurs when the travel angle is unspecified (ref. 8). Since Ay
is a constant and 1s continuous across staging, this final condition cen be satis-
fied at t = ty; A, 1is thus removed from the iteration. Equation (31d) can also
be evaluated at t = tl, and the booster kick angle optimization can be similarly
removed from the iterationm.

The burning times of optimized stages can sometimes be removed from the
iteration, along with an equal number of equations (31). The principle involved
is similar to that used in removing equation (31d): If all variables in the
equation G(Tz) = 0 can be calculated at (or previous to) t = t,, stage 1 can
be terminated (during stage 1) whenever the optimizing equation is satisfied.
The number of optimized stages which can be thus removed depends on the charac-
teristics of the particular problem.

Consider first two powered stages 2) and =T

e b <m, with k. £ 0. Egqua-

tion (3la) must be set equal to zero for i =1 and i =m, and the two result-
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ing equations are combined to give

£ m-1
S
2 f 0 K £ 0
TV Y (si-si)+ﬁsm-sm=o (35)
i=71+1

Eguation (3la) (for i = 1) can be satisfied by the choice of one of the A's.
Egquation (35) cortains terms which can all be calculated at, or prior to, stage
m cutoff, and this eguation can be used to terminate stage m. Specifically,
stage m  1s terminated when

m -
1+k, sy }zji
o _ (‘If — 4 <"O - Z - ”"f - O
S = % v T T R (5§ - ) (36)

m

If k, = 0, the term in S£ disappears from equation (35), and this equation can

then be used to terminate stage m - 1:

m-1 m-2 Sf
f o _ 0 £ 1
Sp.1 - Sy = Z{: 5 - :Z: S{ - TR m>1+1 (37a)
i=1+1 i=1+1 l
oF
L. 1.0 m=1+1 (37b)

The terms on the left side of equations (37) are evaluated at stage m - 1 cut-
off, and the terms on the right side are evaluated during previous stages.
For the specisl case m = N, ky # 0, equation (3lc) must be set equal to

zero. Eguations (3la) (for 1 = 1) and (3lc) are combined to give

N-1

£
Y + K S
£ N 10 E : (f e
e TRy |TEr %Y Sy Si) (38)
15h

Eguation (38) is used to terminate stage N.

For coast phazes to be optimized, equations (31) supply criteria for termi-
ration of the previous stage, similar to equation (37). For such cases, stage
1 - 1 1s terminated when CZ = 0, where stage 1 1s the coasting stage to be

optimized.
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RESULTS

In order to demonstrate the validity of the equations and the feasibility
of the variational technique, parametric results are presented and compared
with the overall optimum solutions obtained by using the variational technique.
Two- and three-stage launch vehicles were optimized by use of the equations
developed. The results presented include a two-stage vehicle flown to circular
orbit and a three-stage vehicle flown to Earth escape through a circular parking
orbit. In these results, both fixed and variable hardware weights were used,
and the propellant loadings and booster kick angle have been optimized. Para-
metric results are also presented, which show the variation of payload with pro-
pellant loadings and kick angle.

Vehicle Definition

The vehicle chosen for this study is a hypothetical three-stage launch

vehicle consisting of two chemical stages and one nuclear stage. The assump-

tions on propulsion and weights are listed in table I.

TABLE I. - LAUNCH VEHICLE PROPULSION AND WEIGHT DATA

Stage
First Second Third

Thrust, 1b 7.5%x106 (Sea level) | 1.5x106 | 2.5x10°
Specific 264 (Sea level) 428 850
impulse, sec 305 (Vacuum)
Fixed 245,000 70,000 35,000
herdwere

weight, 1b

Propellant 0.030 0.033 0.120
sensitive

fraction
Drag reference 855 | ememee | eemeea-
area, sq ft

The first stage is based on the Saturn SI-C stage, consisting of five F-1
engines using RP-LOX propellants. The engine performance data are used for

illustrative purposes only and are not necessarily consistent with present
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3I-2 valuea. ‘The s=cond stage consists of one M-1 engine using liquid hydrogen
and liquid oxygen as propellants. The third stage is a nuclear stage. The
Taurch thrust-to-weight ratio was fixed at 1.25 for this study, and the launch
azimuth wes 90°.

Numerical Results

A typical propellart tank sizing study was conducted with the vehicle de-
fined in table I. In this study, the stages are assumed to have variable tank
size, and the optima: propellant capacitlies are determined by flying possible
missiors of izterest.

e ©iwch missior iz flown to Earih escape energy with three stages. This
rizsion is typical of lunar and planetary probes and orbiters. A parking orbit
ascent mode is uced, wherein all three stages are used to enter a parking orbit
of a 121 nautical-miie altitude (similar to the Apolio mission), after which
tve +third shage is burred to escape. The sezord burning of the third stage is
aszired to be impulsive, with a velocity increment of 10 563 feet per second.
The maxirum payload capatility for this mission is obtained by optimizing the
toogter kirck angle as well as the propellan’ loadings of the three stages. By
use of the eguations derived earlier, maxirum payload can be obtained with a
single (corverged) solution, represented by the optimum point in figure 2.

With the pararetric procedure, the maximum payload is obtained as the
eelope of payload points with all possible combinations of propellant load-
“rgs a~d booster kizk angle. The increased effort (rumber of solutions) re-
Gaired for this procedure is obvious. In addition to the parametric curves
shown in figure 2, each poir* on the curves had to be obtained at an optimum
k¥ angle, which reguirs=d an additional family of curves (not shown in the
tigurs), with kick angle as the independert parameter. As can be seen from
tigrre 2, the payload capability and optimized propellant loading obtained

feorm +he variational prozedure agree with the parametric results.
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Another mission of interest is two stages flown to a circular orbit, with
the use of the first and second stages from table I. Results for this mission
are presented in figures 3 and 4. In figure 3, with the use of the parametric
procedure, payload capability is presented as a function of first-stage pro-
pellant loading for various booster kick-angles. The maximum payload for each
kick angle is determined from the figure and presented as a function of kick
angle in figure 4. The case flown by use of the variational technique is repre-
sented by the optimum point in figure 4, and the payload obtained is in agree-
ment with the envelope, as before.

Frequently, the propellant tanks of the various stages are sized for one
mission and fixed at these values for all other missions. Propellant loadings
can still be optimized in such cases but with the restriction that the propel-
lant loadings cannot exceed the propellant capacities of the tanks.

In figure 5, the three-stage Earth escape mission is reoptimized with
fixed tanks for the first and second stages. The tank weights and propellant
capacities used are based on optimum values for the two-stage orbit mission.
Since the maximum propellant capacities of the first and second stages were not
exceeded in the optimum case, the propellant loadings of these stages were off-
loaded to the optimum values. The parametric results and the variational point
are compared (as in fig. 2), and the results are in agreement.

CONCLUDING REMARKS

A technique is presented which allows simultaneous optimization of the
thrust direction profile and vehicle control pasrsmeters for multistage launch
vehicles. The agreement of parametric and optimum results presented in fig-
ures 2 to S5 demonstrates the correctness of the optimizing equations.

The amount of effort (and computer time) saved by the variational technique
in determining the maximum payload capability can be seen by referring to the

figures. 1In figure 2, for example, approximately 80 parametric data points are
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required to optimize the three-stage propellant loadings and booster kick angle
(not shown in the figure). When good initial guesses are available, the com-
puter time required to obtain the overall optimum solution is about the seme

as for each parametric solution. The time saving is therefore proportional

to the number of parametric cases required for complete optimization.

APPENDIX A
SYMBOLS

c constant of integration
E Weierstrass excess function
e eccentricity
F AT,

;i; J Jd
T constraint equation
G oJ/x
g function of initial and final conditions to be minimized
J functional to be minimized by variational methods
k propellant sensitive mass fraction
m mass, slugs
r radius, ft

S functions defined in egs. (27)
T thrust, 1b

t time, sec

u  redial velocity, ft/sec

v velocity, ft/sec

X problem variable
a booster kick angle, rad
B mass flow rate, slug/sec

'8 function defined in eq. (21)
n generalized state variable

A Lagrange multiplier
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Earth force constant, cu ft/sec?

7
T burning time, sec

) polar angle, rad

s thrust direction, rad

w angular velocity, rad/sec
Subscripts:

a desired value

H fixed hardware

I impulsive

i stage number

J variable number

k variable mumber

A stage number

N last stage

FLL, payload

jo) propellant

5 structure

0 initial

Superscripts:

T end of stage

i refers to t = t4

0 beginning of stage

. derivative with respect to time
+ after staging

before staging

vector
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Figure 1. - Definition of problem variables.
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Figure 2. - Payload capability as function of second-stage propellant
loading. Three stages to Earth escape via 121-nautical-mile park-
ing orbit; variable tanks; first-stage propeifant loading at optimum
point, 4 028 000 pounds; - third-stage propellant loading at opti-
mum point, 317 000 pounds.
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pellant loadings optimized; two stages to 121-nautical-mile orbit;
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Figure 5. - Payload capability as function of second-stage propellant
loading. Three stages to Earth escape via 121-nautical-mife park-
ing orbit; fixed tanks; first-stage propeliant loading at optimum
point, 3 964 000 pounds; third-stage propellant loading at optimum
point, 310 000 pounds.
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